Visual Anagrams and Applications

Ashwin Baluja, 4/18/24

Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models

Daniel Geng, Inbum Park, Andrew Owens

University of Michigan Correspondence to: dgeng@umich.edu

a drawing of a penguin

a drawing of a giraffe

an oil painting of a horse

an oil painting of a snowy mountain village

We need a direct relation between output pixels and noise

What types of transformations work?

What types of transformations work?

Diffusion model tries to predict noise

A (our transformation) must preserve \mathcal{N} (0, 1)

A(pred_noise) ~ \mathcal{N} (0, 1) \implies Cov(A(pred_noise)) = I

(given that mean = 0) $Cov(A(pred_noise)) = AA^T$

 $AA^{T} \implies A \text{ is orthogonal matrix}$

What types of transformations work?

A is a linear matrix that is orthogonal

"flips, rotations, skews, color inversions, and jigsaw rearrangements"

"any orthogonal transformation works as a view with our method"

View: Vertical Flip a photo of a wedding dress a photo of an old woman				
View: Vertical Fip an oil painting of albert einstein an oil painting of elvis				
View: Vertical Flip an oil painting of a red panda an oil painting of a teddy bear				
View: Vertical Flip an oil painting of a kitchen an oil painting of a botanical garden	Shares and the second second			
View: Vertical Flip a painting of a museum a painting of a camel	Wh pop			

Wedding dress

Albert Einstein

Vlew: 90° Rotation a lithograph of a village in the mountains a lithograph of a ship			
View: 90° Rotation a lithograph of a theater a lithograph of a ship		唐重	
View: Negate an ink drawing of a red panda an ink drawing of elvis			
View: Negate an ink drawing of waterfalls an ink drawing of wine and cheese			
View: Negate a lithograph of waterfalls a lithograph of a table	I		

Village in the mountains

Ink drawing of waterfalls

Ink drawing of wine and cheese

Key Takeaways

- Diffusion is flexible!
 - Manipulating noise can still result in coherent outputs

- Conditioning isn't the only way to incorporate info
 - This problem frequently is approached by blending prompt embeddings
 - "Conjoined" diffusion processes are a conceptually simpler way to do this!
 - Blend noise instead!!

What properties do we need to apply this to other domains?

- a transformation that preserves diffusion properties...
 - (in the image case, a linear and orthogonal transformation matrix)
- and an obvious place to separate the task into separate diffusion processes
 - (in the image case, diffusing two images and averaging the noise)

We can apply this to graphs!

At each step, a graph neural network:

- Aggregates information from each node's neighborhood by averaging
 - (in a graph attention network, a weighted average of neighbors, given by softmax of attention scores)
- Transforms aggregated info with a neural network
- Replaces each node's state with the transformed, aggregated info

We can apply this to graphs! (modified for diffusion)

At each step, a graph neural network:

Diffuse over each node's state

(each estimate has mean of 0)

- Aggregates noise estimates from each node's neighborhood by averaging (in a graph attention network, a weighted average of neighbors, given by softmax of attention scores)
 - divide softmax'd attention scores by L2 norm to preserve variance of 1 0
- Transforms aggregated info with a pearal net
- Replaces each node's state with the transformed, aggregated info

preserves diffusion properties... 🔽

separate diffusion processes... 🔽

Problem Definition - Molecular Conformation

- Given a molecule graph, return a stable configuration of 3D coordinates for each atom
- Conditional diffusion: conditioned in molecule graph, diffuse coordinates

An example molecule:

An example molecule: (at diffusion step 1)

An example molecule: (at diffusion step 2)

An example molecule: (at diffusion step 3)

An example molecule: explained

At each timestep, we...

Diffusion...

- A diffusion model <u>diffuses through time</u>
 - Each model step moves closer to the denoised signal
- A graph neural network propagates its information through time
 - Each GNN pass spreads information farther through the graph
- Each diffusion step only simulates a single timestep, but the method (diffusion) already takes that into account...

How do we allow the information to propagate through time, while still only sampling individual timesteps?

Adjacency matrix trick...

- At timestep max_timesteps 1, information can only propagate to adjacent nodes
- At timestep 1, information will eventually propagate everywhere
- Lets simulate this propagation in one step:
 - At timestep *t* out of *n* max_timesteps, there are *n t* timesteps left

All walks of length $(n - t) = adjacency_matrix^{(n-t)}$

this results in HUGE numbers, so we normalize adj a la GCN, $(deg^{-\frac{1}{2}}adj deg^{-\frac{1}{2}})^{(n-t)}$

All tied together now!

- train a diffusion process that fundamentally operates on individual atoms
- diffuse directly over the properties we are interested in
- blend the noise estimates together at each diffusion step
 blend the noise estimates together at each diffusion step
- preserve diffusion properties by normalizing attention coefficients and averaging 0-mean noise estimates
- simulate information propagation through time with matrix exponentiation

efficient!

morally nice! blending noise estimates

≅ every atom exerting a "force" on its neighbors, along bonds

30

simpler, respects

graph structure

more

simple

correctness!

https://github.com/ashwinbaluja/PerNodeDiffusion https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing

Visual Anagrams ++ (latent-space) (my fun work) (extra)

Visual Anagrams ++ (pixel-space) (my fun work) (extra)

