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A1

A2

transformation from original
 to two different “views”

A1
-1

A2
-1

transformation from different 
“views” back to original

identity

180° flip

identity

-180° flip

different prompts!
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We need a direct relation between output pixels and noise 
Operates on 64x64 image

Operates on 256x256 
image

Operates on 1024x1024 
image
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What types of transformations work? 

at{Expected input for 
diffusion model

Signal Noise

A Signal + at(Noise) A Signal +A at Noise } A must be linear!

transformation between 
different “views”
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transformation back 
to original view



What types of transformations work? 

Diffusion model tries 
to predict noise }𝓝 (0, 1)

A (our transformation) must preserve 𝓝 (0, 1)

A(pred_noise) ~ 𝓝 (0, 1) Cov(A(pred_noise)) = I

(given that mean = 0) Cov(A(pred_noise)) = AAT

 AAT A is orthogonal matrix 6



What types of transformations work? 

A is a linear matrix that is orthogonal{
“flips, rotations, skews, color inversions, and jigsaw 

rearrangements”

“any orthogonal transformation works as a view 
with our method”
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Wedding dress Old woman
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Albert Einstein Elvis Presley
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Village in the 
mountains A ship
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Ink drawing of 
waterfalls

Ink drawing of wine 
and cheese
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Key Takeaways

● Diffusion is flexible!
○ Manipulating noise can still result in coherent outputs

● Conditioning isn’t the only way to incorporate info
○ This problem frequently is approached by blending prompt 

embeddings
○ “Conjoined” diffusion processes are a conceptually simpler 

way to do this!
○ Blend noise instead!! 



What properties do we need to apply this to other domains? 

● a transformation that preserves diffusion properties… 
○ (in the image case, a linear and orthogonal transformation matrix)

● and an obvious place to separate the task into separate 
diffusion processes
○ (in the image case, diffusing two images and averaging the noise)
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We can apply this to graphs!

At each step, a graph neural network:

● Aggregates information from each node’s neighborhood by averaging
○ (in a graph attention network, a weighted average of neighbors, given by softmax of attention 

scores)
● Transforms aggregated info with a neural network
● Replaces each node’s state with the transformed, aggregated info
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We can apply this to graphs! (modified for diffusion)

At each step, a graph neural network:

● Diffuse over each node’s state
● Aggregates noise estimates from each node’s neighborhood by averaging

○ (in a graph attention network, a weighted average of neighbors, given by softmax of attention 
scores)

○ divide softmax’d attention scores by L2 norm to preserve variance of 1
● Transforms aggregated info with a neural network
● Replaces each node’s state with the transformed, aggregated info
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preserves diffusion properties… ✅ 
separate diffusion processes… ✅ 

(each estimate 
has mean of 0)



● Given a molecule graph, return a stable configuration of 3D coordinates for 
each atom

● Conditional diffusion: conditioned in molecule graph, diffuse coordinates
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Problem Definition - Molecular Conformation
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{ x, y, z, atom properties, molecule properties }

an atom

coordinates

from qm9

per atom, per 
molecule

from MPNN for 
quantum chemistry

same for all atoms 
per molecule

from qm9

What data do we use? 
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An example molecule:

coordinates,
atom properties,

molecule properties
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An example molecule: (at diffusion step 1) 

add 
self-loops
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An example molecule: (at diffusion step 2) 

noise 
estimates
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An example molecule: (at diffusion step 3) 
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An example molecule: explained

diffusion process runs 
on each node!

(separate diffusion 
processes ✅)
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At each timestep, we…

Transformer Modified GAT

noisy input

noise estimate ONLY 
for this atom

noise estimate from other 
nodes in the 

neighborhood

estimated 
denoised input

final noise 
prediction
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At each timestep, we…

Transformer Modified GAT

● compute attention scores for each neighbor

● normalize attention scores s.t. sum((att_x)2 for 
x in neighborhood) = 1

● output = sum(att_x (noise_est) for x ….) 

preserve 
variance!

preserve 
mean!



Diffusion…
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● A diffusion model diffuses through time
○ Each model step moves closer to the denoised signal

● A graph neural network propagates its information through time
○ Each GNN pass spreads information farther through the graph

● Each diffusion step only simulates a single timestep, but the method (diffusion) 
already takes that into account…  

How do we allow the information to propagate through time, 
while still only sampling individual timesteps? 



Walks on a graph
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C

A B

D

Looking only at one 
step, information 
from A will never 

make it to D 

walks of length 1 starting 
at A

C

A B

D

walks of length 2 starting 
at A

Information ONLY passes 
along these edges



● At timestep max_timesteps - 1, information can only propagate to adjacent 
nodes

● At timestep 1, information will eventually propagate everywhere
● Lets simulate this propagation in one step: 

○ At timestep t out of n max_timesteps, there are n - t timesteps left
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Adjacency matrix trick…

All walks of length (n - t) = adjacency_matrix(n-t)

this results in HUGE numbers, so we normalize adj a la GCN, 
(deg-½ adj deg-½)(n-t)



morally nice! blending noise estimates 
≅ every atom exerting a “force” on its 

neighbors, along bonds

All tied together now! 

● train a diffusion process that fundamentally operates on individual atoms
● diffuse directly over the properties we are interested in
● blend the noise estimates together at each diffusion step
● preserve diffusion properties by normalizing attention coefficients and 

averaging 0-mean noise estimates
● simulate information propagation through time with matrix exponentiation
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simpler, respects 
graph structure 

more

learns conformations 
by learning other useful 

properties

efficient!
simple 

correctness!



https://github.com/ashwinbaluja/PerNodeDiffusion
https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing
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https://github.com/ashwinbaluja/PerNodeDiffusion
https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing
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Visual Anagrams ++ (latent-space) (my fun work) (extra)

No prompt!



Visual Anagrams ++ (pixel-space) (my fun work) (extra) 
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No prompt!


