Visual Anagrams and Applications

Ashwin Baluja, 4/18/24

Visual Anagrams: Generating Multi-View $\sqrt[22]{\sqrt{2}}$ **Optical Illusions with Diffusion Models**

Daniel Geng, Inbum Park, Andrew Owens

University of Michigan Correspondence to: dgeng@umich.edu

a drawing of a penguin

a drawing of a giraffe

an oil painting of a horse

an oil painting of a snowy mountain village

We need a direct relation between output pixels and noise

What types of transformations work?

What types of transformations work?

Diffusion model tries

A (our transformation) must preserve $\mathcal{N}(0, 1)$

A(pred_noise) ~ $\mathcal{N}(0, 1) \implies \text{Cov}(A(\text{pred noise})) = I$

(given that mean = 0) $Cov(A(pred \ noise)) = AA^T$

 $AA^T \implies A$ is orthogonal matrix $\qquad \qquad \bullet$

What types of transformations work?

A is a <u>linear matrix</u> that is <u>orthogonal</u>

"flips, rotations, skews, color inversions, and jigsaw rearrangements"

"any orthogonal transformation works as a view with our method"

 \mathbf{a}

 λ

Albert Einstein (Elvis Presley

Village in the m and m and m are m

Ink drawing of waterfalls

Ink drawing of wine and cheese

Key Takeaways

- Diffusion is flexible!
	- Manipulating noise can still result in coherent outputs

- Conditioning isn't the only way to incorporate info
	- \circ This problem frequently is approached by blending prompt embeddings
	- "Conjoined" diffusion processes are a conceptually simpler way to do this!
	- **○ Blend noise instead!!**

What properties do we need to apply this to other domains?

- a transformation that preserves diffusion properties...
	- (in the image case, a linear and orthogonal transformation matrix)
- and an obvious place to separate the task into separate diffusion processes
	- \circ (in the image case, diffusing two images and averaging the noise)

We can apply this to graphs!

At each step, a graph neural network:

- Aggregates information from each node's neighborhood by averaging
	- (in a graph attention network, a weighted average of neighbors, given by softmax of attention scores)
- Transforms aggregated info with a neural network
- Replaces each node's state with the transformed, aggregated info

We can apply this to graphs! (modified for diffusion)

At each step, a graph neural network:

Diffuse over each node's state

(each estimate has mean of 0)

- Aggregates noise estimates from each node's neighborhood by averaging (in a graph attention network, a weighted average of neighbors, given by softmax of attention scores)
	- divide softmax'd attention scores by L2 norm to preserve variance of 1
- Transforms aggregated info with a peural ne
- Replaces each node's state with the transformed, aggregated info

preserves diffusion properties...

separate diffusion processes... V

Problem Definition - Molecular Conformation

- Given a molecule graph, return a stable configuration of 3D coordinates for each atom
- Conditional diffusion: conditioned in molecule graph, diffuse coordinates

CC(C)OC(=O)CCC/C=C\\C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCc1ccccc1

An example molecule:

An example molecule: (at diffusion step 1)

An example molecule: (at diffusion step 2)

An example molecule: (at diffusion step 3)

An example molecule: explained

At each timestep, we…

Diffusion…

- A diffusion model diffuses through time
	- Each model step moves closer to the denoised signal
- A graph neural network propagates its information through time
	- Each GNN pass spreads information farther through the graph
- Each diffusion step only simulates a single timestep, but the method (diffusion) already takes that into account…

How do we allow the information to propagate through time, while still only sampling individual timesteps?

Adjacency matrix trick…

- At timestep *max_timesteps* 1, information can only propagate to adjacent nodes
- At timestep 1, information will eventually propagate everywhere
- Lets simulate this propagation in one step:
	- At timestep *t* out of *n* max_timesteps, there are *n t* timesteps left

All walks of length $(n - t)$ = adjacency matrix^(n-t)

this results in HUGE numbers, so we normalize adj a la GCN, $(\text{deg}^{\frac{1}{2}} \text{adj} \text{ deg}^{\frac{1}{2}})^{n-t}$

All tied together now!

- train a diffusion process that fundamentally operates on individual atoms learns conformations
- diffuse directly over the properties we are interested in
- blend the noise estimates together at each diffusion step **b** learning other useful properties
- preserve diffusion properties by normalizing attention coefficients and averaging 0-mean noise estimates
- simulate information propagation through time with matrix exponentiation

efficient!

morally nice! blending noise estimates

 \cong every atom exerting a "force" on its neighbors, along bonds

30

simpler, respects

graph structure

more

simple

correctness!

<https://github.com/ashwinbaluja/PerNodeDiffusion> https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing

Visual Anagrams ++ (latent-space) (my fun work) (extra)

Visual Anagrams ++ (pixel-space) (my fun work) (extra)

