
1

Visual Anagrams and
Applications
Ashwin Baluja, 4/18/24

2

cvpr 2024

A1

A2

transformation from original
 to two different “views”

A1
-1

A2
-1

transformation from different
“views” back to original

identity

180° flip

identity

-180° flip

different prompts!

3

We need a direct relation between output pixels and noise
Operates on 64x64 image

Operates on 256x256
image

Operates on 1024x1024
image

4

What types of transformations work?

at{Expected input for
diffusion model

Signal Noise

A Signal + at(Noise) A Signal +A at Noise } A must be linear!

transformation between
different “views”

5

transformation back
to original view

What types of transformations work?

Diffusion model tries
to predict noise }𝓝 (0, 1)

A (our transformation) must preserve 𝓝 (0, 1)

A(pred_noise) ~ 𝓝 (0, 1) Cov(A(pred_noise)) = I

(given that mean = 0) Cov(A(pred_noise)) = AAT

 AAT A is orthogonal matrix 6

What types of transformations work?

A is a linear matrix that is orthogonal{
“flips, rotations, skews, color inversions, and jigsaw

rearrangements”

“any orthogonal transformation works as a view
with our method”

7

8

9

Wedding dress Old woman

10

Albert Einstein Elvis Presley

11

12

Village in the
mountains A ship

13

Ink drawing of
waterfalls

Ink drawing of wine
and cheese

14

Key Takeaways

● Diffusion is flexible!
○ Manipulating noise can still result in coherent outputs

● Conditioning isn’t the only way to incorporate info
○ This problem frequently is approached by blending prompt

embeddings
○ “Conjoined” diffusion processes are a conceptually simpler

way to do this!
○ Blend noise instead!!

What properties do we need to apply this to other domains?

● a transformation that preserves diffusion properties…
○ (in the image case, a linear and orthogonal transformation matrix)

● and an obvious place to separate the task into separate
diffusion processes
○ (in the image case, diffusing two images and averaging the noise)

15

We can apply this to graphs!

At each step, a graph neural network:

● Aggregates information from each node’s neighborhood by averaging
○ (in a graph attention network, a weighted average of neighbors, given by softmax of attention

scores)
● Transforms aggregated info with a neural network
● Replaces each node’s state with the transformed, aggregated info

16

We can apply this to graphs! (modified for diffusion)

At each step, a graph neural network:

● Diffuse over each node’s state
● Aggregates noise estimates from each node’s neighborhood by averaging

○ (in a graph attention network, a weighted average of neighbors, given by softmax of attention
scores)

○ divide softmax’d attention scores by L2 norm to preserve variance of 1
● Transforms aggregated info with a neural network
● Replaces each node’s state with the transformed, aggregated info

17

preserves diffusion properties… ✅
separate diffusion processes… ✅

(each estimate
has mean of 0)

● Given a molecule graph, return a stable configuration of 3D coordinates for
each atom

● Conditional diffusion: conditioned in molecule graph, diffuse coordinates

18

Problem Definition - Molecular Conformation

19

{ x, y, z, atom properties, molecule properties }

an atom

coordinates

from qm9

per atom, per
molecule

from MPNN for
quantum chemistry

same for all atoms
per molecule

from qm9

What data do we use?

20

An example molecule:

coordinates,
atom properties,

molecule properties

21

An example molecule: (at diffusion step 1)

add
self-loops

22

An example molecule: (at diffusion step 2)

noise
estimates

23

An example molecule: (at diffusion step 3)

24

An example molecule: explained

diffusion process runs
on each node!

(separate diffusion
processes ✅)

25

At each timestep, we…

Transformer Modified GAT

noisy input

noise estimate ONLY
for this atom

noise estimate from other
nodes in the

neighborhood

estimated
denoised input

final noise
prediction

26

At each timestep, we…

Transformer Modified GAT

● compute attention scores for each neighbor

● normalize attention scores s.t. sum((att_x)2 for
x in neighborhood) = 1

● output = sum(att_x (noise_est) for x ….)

preserve
variance!

preserve
mean!

Diffusion…

27

● A diffusion model diffuses through time
○ Each model step moves closer to the denoised signal

● A graph neural network propagates its information through time
○ Each GNN pass spreads information farther through the graph

● Each diffusion step only simulates a single timestep, but the method (diffusion)
already takes that into account…

How do we allow the information to propagate through time,
while still only sampling individual timesteps?

Walks on a graph

28

C

A B

D

Looking only at one
step, information
from A will never

make it to D

walks of length 1 starting
at A

C

A B

D

walks of length 2 starting
at A

Information ONLY passes
along these edges

● At timestep max_timesteps - 1, information can only propagate to adjacent
nodes

● At timestep 1, information will eventually propagate everywhere
● Lets simulate this propagation in one step:

○ At timestep t out of n max_timesteps, there are n - t timesteps left

29

Adjacency matrix trick…

All walks of length (n - t) = adjacency_matrix(n-t)

this results in HUGE numbers, so we normalize adj a la GCN,
(deg-½ adj deg-½)(n-t)

morally nice! blending noise estimates
≅ every atom exerting a “force” on its

neighbors, along bonds

All tied together now!

● train a diffusion process that fundamentally operates on individual atoms
● diffuse directly over the properties we are interested in
● blend the noise estimates together at each diffusion step
● preserve diffusion properties by normalizing attention coefficients and

averaging 0-mean noise estimates
● simulate information propagation through time with matrix exponentiation

30

simpler, respects
graph structure

more

learns conformations
by learning other useful

properties

efficient!
simple

correctness!

https://github.com/ashwinbaluja/PerNodeDiffusion
https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing

31

https://github.com/ashwinbaluja/PerNodeDiffusion
https://colab.research.google.com/drive/1d_V2bsVZdtBwpOHHOt_WowH4U8Uu7GZn?usp=sharing

32

Visual Anagrams ++ (latent-space) (my fun work) (extra)

No prompt!

Visual Anagrams ++ (pixel-space) (my fun work) (extra)

33

No prompt!

