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The task: humor explanation
Given an input joke, output a natural language explanation 
of the joke:

Joke: My neighbor's sprinkler is a constant 
irrigation to me!

Explanation: This is a pun on 'irritation' 
which is the state of feeling annoyed, 
impatient, or slightly angry...



Humor explanation, focusing on puns
Why puns?
• Puns exploit ambiguities in input modality

A. Homographs: same spelling, different meanings (~ambiguous audio) 
B. Heterographs: different spellings, similar sounds (~ambiguous text)

A. bow vs. bow B. flower vs. flour



Existing approaches and related work
1. LLM-based joke explanations

– Xu et al. "A good pun is its own reword": Can Large Language Models Understand Puns?."

2. Fine-tuned LLMs for recognizing types of humor
– Wu et al. "Humour classification by fine-tuning LLMs: CYUT at CLEF 2024 JOKER Lab subtask humour 

classification according to genre and technique.”

3. Fused modality representations
– Hasan et al. "Humor knowledge enriched transformer for understanding multimodal humor."

4. Paired modality training
– Liu et al. "Visual instruction tuning." 



Agenda
1.
How to provide the LLM 
with information to 
preserve the ambiguity 
in puns?

2.
How does this method 
perform across different 
datasets, types of puns, 
and humor in general? 

3.
What is the underlying 
mechanism behind the 
performance increase?



Multimodal prompting strategy
• LLM takes in both audio and text 

simultaneously
• OpenAI tts-1-hd used for TTS
• Gemini-1.5-Flash used for 

generating explanations



Prompt composition
• Task in prompt is pun 

recognition

• Chain-of-thought reasoning is 
used as explanation

• Specific wording needed 
match output style to dataset



"het_1105": {
      "pun_word": "barbarously",
      "pun_sense": "in a barbarous manner",
      "alter_word": "barber",
      "alter_sense": "a hairdresser who cuts hair and shaves 
            beards as a trade",
      "human_text": "' ' Give me a haircut , ' ' Tom said 
            barbarously .",
      "human_explanation": "The joke is a play on words. To
            do or say something 'barbarously' is to be loud or 
            rowdy.  'Barbarously' sounds like 'barber', and 
            barbers cut hair."
 }

Datasets tested (puns)
• SemEval-2017 task 7

– annotations and human 
joke explanations

– Miller et al. “SemEval-2017 task 7: 
Detection and interpretation of English 
puns.”

• Context Situated Puns
– annotations, no human joke 

explanations
– Sun et al. “Context-Situated Pun 
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Datasets tested (other)
• ExplainTheJoke

– Many types of jokes
– Inconsistently formatted 

joke explanations
– Explanations summarized 

by LLM into consistent 
format, used as annotation

– https://explainthejoke.com/

{
   "joke": "Q: What do you call a grilled cheese sandwich that 
          gets right up in your face? A: Too close for comfort food!,",
   "explanation": "This joke is funny because it plays on the 
          double meaning of 'too close for comfort,' using the idiom 
          to refer to both physical proximity and emotional 
          closeness, while also referencing the comforting nature of 
          food."

}



Evaluation methods
• Comparing natural language outputs
• GPT-4o used as a judge
• Annotations provided to judge to ground decisions

– definition and spelling of both interpretations of the pun
• Judged by pairwise comparison win-rates

GPT-4o
Explanation A

Explanation B

Ground Truth Annotations

Explanation A and B are of 
similar quality

Explanation A is much 
better than explanation B

Explanation B is much 
better than explanation A



Results (puns)

vs. human explanations

SemEval



Results (puns)

vs. each other

Context 
Situated Puns



Results (other)

ExplainTheJoke

vs. each other



Insights: audio logits
In each example, an audio-capable LLM was asked what 
word was spoken at a position in an audio clip.

“where” “patience is a heavy weight”



• Multiple voice types tested, including passing in more 
than one voice at a time

• No clear performance trend with voice type

Insights: TTS parameters



Extensions and future work
1. Expand additional input modalities beyond audio
2. Benchmark new tasks, both outside of puns and humor
3. In-depth analysis of effect of TTS parameters on 
performance across types of jokes, subject matter

Q: What’s in the middle of the pacific?
A: “c”



Conclusions
1.
Multimodal prompts 
improve humor 
understanding

2.
Significant performance 
improvements are 
possible with no 
additional training

3.
This method paves the 
way for broader 
applications, both with 
audio input or with other 
modality inputs
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